
Sourcery

Version 1.12 (29-Jul-2012)

Sourcery is public domain
This program may be freely distributed for no more than the cost of the media on which it is distributed.

It remains at all times © Copyright 2004-2012 R. F. Windley & The Really Small Software Company.

Disclaimer:
This software is supplied as is. No responsibility will be taken by the author for any loss of data through the use or misuse of

this application.

Contents

Introduction. Page 1
Assumptions . Page 1
Requirements. Page 1

Getting started . Page 2
Loading Sourcery. Page 2
The Sourcery user interface Page 3

CVS and Subversion . Page 7

Tutorial . Page 8

Creating a project . Page 9
Assumptions . Page 9
Getting started . Page 9
Creating source code Page 12
Specifying include paths Page 16
Specifying libraries Page 17
Building the project Page 18

Creating a GCC project Page 19
Assumptions. Page 19
Getting started. Page 19
Creating source code Page 22
Specifying include paths Page 26
Specifying libraries Page 27
Linker flags . Page 28
Building the project Page 29

Creating an application Page 30
Assumptions. Page 30
Getting started. Page 31
Creating source code Page 33
Specifying include paths Page 35
Specifying libraries Page 36
Defining resources Page 37
Modules . Page 40
Building the project Page 42
Running the project Page 43

Importing an existing project Page 44
Assumptions. Page 44
Getting started. Page 44
Setting the code type Page 47
Specifying include paths Page 48
Specifying libraries Page 49
Building the project Page 50
Running the project Page 51

Reference. Page 52

Projects . Page 53
Exporting a project Page 53
Project definition. Page 54
Editing a project definition Page 58
Targets . Page 59
Constants . Page 60
Project type templates. Page 62

Project details . Page 63
Project . Page 64
Code. Page 72
Adding new code . Page 78

Source definition . Page 79
Editing a source definition Page 80
Code type templates Page 80
!RunImage source definition Page 81

Include path definition. Page 82
Editing an include path Page 84
Deleting an include path. Page 84
Changing the order of include paths Page 84

Library definition . Page 85
Editing a library . Page 87
Deleting a library . Page 87
Changing the order of libraries Page 87

Resources . Page 88
Adding new resources. Page 93
Editing a resource . Page 94

Resource definition . Page 95
Editing a resource definition. Page 96

Modules. Page 97
Adding a module . Page 97
Module version . Page 98
Specifying a module for a specific version of RISC OS . Page 99
Deleting a module . Page 99
Changing the order of modules Page 99

Project flags . Page 100
Project tool flag settings Page 101

Multiple build objects Page 103
Master project type. Page 106
Building multiple objects Page 106

Choices . Page 107
Code types . Page 108
Project types . Page 113
Flags . Page 114
Resources . Page 115
Tools . Page 116
Prompts . Page 122
Tool sequences . Page 124
Menu sequences. Page 125
Include paths. Page 129
Include paths and Targets Page 131
Libraries . Page 132
Libraries and Targets. Page 134
Modules . Page 135
Targets . Page 137
Target flags. Page 138
Obey templates . Page 141
Help variable code segment Page 142
Module ensure code segment Page 144
Module version ensure code segment Page 146
Start actions . Page 147
General . Page 149

Toolbar. Page 151
The iconbar menu . Page 153
Appendix A . Page 155

Introduction
Sourcery is intended to be an easy to use development tool that replaces make to enable RISC OS applications, modules and
libraries to be built quickly and efficiently. Sourcery removes the tedium of maintaining the source code and resource files that
make up a project and allows the developer to concentrate on the actual development of their project.

Sourcery does not try to impose any restrictions on the tools or compilers that are used to build a project, it simply tries to make
the use of these tools as pain free as possible.

Assumptions
This manual assumes that the reader is familiar with application development on RISC OS and also with the C programming
language. This is not to say that C has to be used, simply that some of the examples given use C.

Requirements
Sourcery has been tested on RISC OS 4.02 and 4.39. It has been built to be 26/32 bit neutral and does not require the 32 bit C
library to be installed. It does however require the latest set of Toolbox modules which can be downloaded from RISC OS Ltd's
Web site at http://www.riscos.com.

Page 1

Getting started

Loading Sourcery
Sourcery is loaded by double clicking on the Sourcery icon in the filer display:

Once loaded an the Sourcery icon will appear on the iconbar in the standard way.

Page 2

The Sourcery user interface
Clicking Select on the iconbar icon will display a window containing the projects that are currently defined within Sourcery. The
first time Sourcery is run this will be empty but it can contain projects or project groups. An example is shown below:

Sourcery has been designed to be easy to use and immediately familiar to anyone used to RISC OS. It therefore uses a Filer
like display for many of its windows. This presents the user with objects and directories which can be double clicked on to open
new windows.

These objects can be dragged to other windows of the same type either singularly or in groups. A dialog box similar to the Filer
Action dialog box is used to confirm the action.

Page 3

The Filer like display used by many of the windows in Sourcery provides a context sensitive menu. The menu is displayed by
clicking Menu over the window:

The standard menu has the following entries:

Display
Allows the way the items are displayed to be controlled. Three different types of view are available:

Items are displayed using large icons Items are displayed using small icons

Items are displayed with additional information

Additionally some windows allow the ordering of the items to be specified as well.

Page 4

Item
The Item option leads to a sub menu giving further functionality:

Copy
Allows a copy of the selected item to be made with a new name.

Rename
Allows the selected item to be renamed.

Delete
Prompts the user to confirm the selected items should be deleted.

Edit...
Opens an item specific editing window.

Note that some Item sub menus will have additional entries on them which are covered later.

Select all
Selecting this causes all of the items in the window to be highlighted.

Clear selection
This will unselect any highlighted entries in the window.

Page 5

New
The New entry allows a new item to be created. It offers a sub menu which also allows a new directory to be created:

Help
Choosing this item will display the help supplied with the application. If a Web browser is available then that will be used,
otherwise a simple textfile will be displayed:

Page 6

CVS and Subversion
Sourcery has limited support for CVS and Subversion. This is implemented due to the ability to define new commands that can
appear on the main menu at project and source code level.

Support is limited to checking code in and out, looking at differences and checking the state of the project. For any other operation
the relevant GUI or command line tools must be used.

This manual assumes the user knows how to set up and maintain a CVS or Subversion installation, it is not intended to guide
the user in the use of these tools.

CVS can be downloaded from:

http://www.bass-software.com/cvs/

A Subversion client can be found at:

http://www.cp15.org/versioncontrol/

Page 7

Tutorial

Page 8

Creating a project
This tutorial explains how to create a simple project, add code to it and compile and run it.

Assumptions
This tutorial assumes you have the following installed on your computer:

• Acorn C/C++ suite

See Appendix A for information detailing where this can be obtained from.

Getting started
Creating new projects in Sourcery is easy. Display the Project window by clicking Select on the icon bar. Also display a Filer
window where the project will be physically located on disk.

Click Menu over the Project window and choose New followed by New item... from the menu:

This will display the Project Definition window:

Page 9

This window allows the initial details for the project to be specified. Not all of these details are required for each type of project.
For this example just complete the following fields:

Name
The name of the project. This will be the name of the directory created to store the project files as well as the name of the
target file created (unless the project is a RISC OS application). For this example enter the name projname.

Description
A short description of what the project does. Type My first project. into this field.

Project type
The list of available project types will vary according to how Sourcery is configured. For this simple first project choose
Command line utility.

Page 10

Location
This is the location where the project directory will be created on disk. Drag the App icon to the Filer window where the project
is to be created.

Click the Save button to create the project. An icon for the newly created project will appear in the Project window.

Nothing will appear in the Filer window until some source code or resources are created for the project.

Page 11

Creating source code
Double clicking on the newly created project in the Projects window will display the different components that make up the
project. This will vary according to the type of project created. For this example the following will be displayed:

Double clicking on the Code icon will display the Code window which shows the source code currently defined in the project. At
this point there will not be any code defined. To create some new code click Menu over the Code window and choose New
followed by New item...:

Page 12

The Source definition window will be displayed:

This allows the type of source code being created to be specified. Sourcery supports a number of different types of source
code and more can be added by the user as required.

Enter the following details into this window:

Name
The name of the source code to be created. For this example type mycode.

Description
A simple description of what the code does. Type A simple example for this first piece of code.

Page 13

Code type
The available codes types will vary according to your system. For this example choose C.

Click the Save button. The new code will be created and an icon displayed in the Source window:

Double clicking on the code icon will load it into whatever text editor is installed on your system:

Page 14

As can be seen from the example a header has been automatically generated for the code and includes the name, description
and date of creation of the code.

Amend everything below the header to read as follows:

#include <stdio.h>

int main(void)

 {

 printf("Hello world\n");

 return 0;

 }

Save this code for later.

Page 15

Specifying include paths
Before the project can be built it is necessary to define the include paths where the header files can be found. Double clicking
on the Include icon in the project window will display the Include path definition window:

Include paths can be specified in a number of different ways. For this example drag the directory that contains the ANSI C
header files for your compiler to the window and click Save.

Page 16

Specifying libraries
Libraries are set up in a similar way to include paths. Double clicking the Libraries icon will display the Library definition
window. Drag the C library to link against to this window:

Click Save to save the library details. The project is now ready to be built.

Page 17

Building the project
Along the top of the Code and Project details window are toolbars which allow access to certain functions:

Clicking the leftmost icon will build the project. As the build process progresses a window is displayed which shows any output
generated by the compiler:

In this case the project has been successfully built. Opening the directory which contains the project source will reveal the
newly created executable. Double clicking this will display Hello world on the screen.

Page 18

Creating a GCC project
This tutorial explains how to create a project using an alternative tool chain, in this case GCC.

Assumptions
This tutorial assumes you have the following installed on your computer:

• GCC compiler and tools

See Appendix A for information detailing where these can be obtained from.

Getting started
Creating projects for different tool chains is generally the same as the previous example.However, GCC is a very popular compiler
so it is worth giving an example of a project using it.

Display the Project window by clicking Select on the icon bar. Also display a Filer window where the project will be physically
located on disk.

Click Menu over the Project window and choose New followed by New item... from the menu:

Page 19

This will display the Project Definition window:

This window allows the initial details for the project to be specified. Not all of these details are required for each type of project.
For this example just complete the following fields:

Name
The name of the project. This will be the name of the directory created to store the project files as well as the name of the
target file created (unless the project is a RISC OS application). For this example enter the name gccproj.

Description
A short description of what the project does. Type My second project. into this field.

Page 20

Project type
The list of available project types will vary according to how Sourcery is configured. For this project choose GCC Command
line utility.

Location
This is the location where the project directory will be created on disk. Drag the App icon to the Filer window where the project
is to be created.

Click the Save button to create the project. An icon for the newly created project will appear in the Project window.

Nothing will appear in the Filer window until some source code or resources are created for the project.

Page 21

Creating source code
Double clicking on the newly created project in the Projects window will display the different components that make up the
project. This will vary according to the type of project created. For this example the following will be displayed:

Double clicking on the Code icon will display the Code window which shows the source code currently defined in the project. At
this point there will not be any code defined. To create some new code click Menu over the Code window and choose New
followed by New item...:

Page 22

The Source definition window will be displayed:

This allows the type of source code being created to be specified. Sourcery supports a number of different types of source
code and more can be added by the user as required.

Enter the following details into this window:

Name
The name of the source code to be created. For this example type mycode.

Description
A simple description of what the code does. Type A simple example for this piece of code.

Code type
The available codes types will vary according to your system. For this example choose GNU C.

Click the Save button. The new code will be created and an icon displayed in the Source window:

Page 23

Double clicking on the code icon will load it into whatever text editor is installed on your system:

As can be seen from the example a header has been automatically generated for the code and includes the name, description
and date of creation of the code.

Page 24

Amend everything below the header to read as follows:

#include <stdio.h>

int main(void)

 {

 printf("Hello world\n");

 return 0;

 }

Save this code for later.

Page 25

Specifying include paths
For this example GCC is actually able to find the include files it needs without us telling it where to look.

Page 26

Specifying libraries
In this example GCC knows what libraries need to be supplied and will take care of that for you.

Page 27

Linker flags
Depending on which version of GCC is in use, different linker flags are available. By default, Sourcery is configured to use
version 4 of GCC in which case it should not be necessary to set any specific linker flags. This is the recommended setting. If
using an earlier version however then the linker flags should be configured as follows:

Within this window, double click the Linkers directory,
followed by GCC and then drlink to give the Project tool
flag settings window:

In this window make sure that the Rescan option is ticked
and click Save.

Page 28

Building the project
Along the top of the Code and Project details window are toolbars which allow access to certain functions:

Clicking the leftmost icon will build the project. As the build process progresses a window is displayed which shows any output
generated by the compiler (this will vary depending on the version of GCC in use):

In this case the project has been successfully built. Opening the directory which contains the project source will reveal the

newly created executable. Double clicking this will display Hello world on the screen.

Page 29

Creating an application
The previous sections described how to create a simple command line projects. Now we will look at how to create a more
complicated kind of project, a RISC OS application.

Assumptions
This tutorial assumes you have the following installed on your computer:

• Acorn C/C++ suite
• OSLib library

See Appendix A for information detailing where these can be obtained from.

Page 30

Getting started
Building on what was covered before, we will create another new project with the details shown below:

Click Save once the details are entered. Note that the Location will vary from the example shown.

Page 31

Double clicking on the create project icon in Sourcery will display more icons in the Project window that the first example:

Two extra icons have been added to this window.

Resources
These are supporting files needed by an application to function. They include !Run files, Sprites and window templates.
Sourcery does not limit the kind of files that can be created as resource files, nor does it limit them to being placed solely within
the project directory. Sub directories can be created which contain further resource files.

Modules
Applications often rely on having specific versions of modules in order for them to work. These module versions are specified
in an applications !Run file. Specifying and maintaining the necessary module lines can be tedious so Sourcery enables you to
pick which modules you want and builds the !Run file for you.

Page 32

Creating source code
Create some source code in the same way as before. Double click the Code icon and in the newly opened window choose
New from the main menu:

As before we will create a C source code file. Enter the code shown on the next page. Note that this is not intended to be an
example of a sensible RISC OS application.

Page 33

 /*

 ** Name: main.c

 **

 ** Date: Wed Dec 8 20:26:44 2004

 **

 ** Purpose: My application

 **

 */

 #include <string.h>

 #include “wimp.h”

 int main(void)

 {

 os_error error;

 wimp_error_box_selection click;

 wimp_version_no version;

 wimp_t task;

 task = wimp_initialise(wimp_VERSION_RO30,“!Test”,NULL,&version);

 error.errnum = 0;

 strcpy(error.errmess,”Hello world”);

 click = wimp_report_error(&error,wimp_ERROR_BOX_OK_ICON,“!Test”);

 return 0;

 }

Page 34

Specifying include paths
The include path that was set up in the first example involved dragging a directory from a filer window to the Include path
definition window.

Display the Include path definition window as before:

Now, from the iconbar menu choose Templates followed by Include paths...:

This displays a list of predefined Include paths. The Choices section later describes how these can be customised but for now
just drag the OSLib icon to the Include path definition window. Specifying include paths in this was allows multiple physical
paths to be specified at once. The definition for OSLib actually include OSLib and the ANSI C header paths.

Page 35

Specifying libraries
In a similar way to which we have specified the include paths that we want to use, we will also specify the libraries. Display the
Library definition window by double clicking on the Libraries icon:

From the iconbar menu choose Templates followed by Libraries...:

Drag the OSLib icon to the Library definition window. This will include the libraries needed by OSLib as well as the Shared C
Library Stubs file.

Page 36

Defining resources
Double clicking the Resources icon allows us to define various support files needed by the application. Existing files can be
directly imported into the project by dragging them from a filer window. Alternatively there are a number of template files
available. Choose Templates followed by Resources... from the iconbar menu:

These files can then be dragged to the project Resources window.

Drag the following files from the templates window to the Resources window:

!Boot
!Run
!Sprites

Sourcery will try and fill in some off the details of these files when they are imported. Open the !Run file by double clicking on it:

Page 37

As you can see, Sourcery has attempted to complete certain parts of the !Run file automatically. The name of the application
has been inserted in a number of places.

The WimpSlot command however needs to be amended manually to specify how much memory the application requires. In
this example we can also see two special blocks that have been auto generated.

The first of these is the help details block. When the project is built this will be populated with some of the details specified in
the project details window including the description, version and website for the project.

The second block is the module list block. The modules specified in the next section will be included here with the necessary
RMEnsure and RMLoad commands when the project is built.

Next open the !Sprites file by double clicking on it.

Page 38

Here we can see that the sprites for the application have also been correctly named.

Sourcery attempts to generate resource files which are complete as possible. However, there will always be some manual
editing that needs to take place on the generated file.

Page 39

Modules
Double click the Modules icon will display a window which allows the modules that need to be loaded for the application to be
run to be defined:

The list of available modules definitions can be seen by clicking the Templates... button or choosing Templates followed by
Modules... from the iconbar menu:

Drag the required modules from the templates window to the Application modules window. For this example drag the Toolbox
and Window modules from the Toolbox directory.

Page 40

Highlighting a module allows the required version number to be set. For this example leave the Use latest flag set to indicate
that the !Run file will include the latest version of the module that Sourcery knows about.

Click Save to save the module list.

Page 41

Building the project
As in the first example click the leftmost icon at the top of the Code or Project details window.

This should build the project successfully.

Before running the project open the !Run file from the Resource window. It should now look something like the following:

As you can see, the help and module blocks have been filled in with the information specified in the Project definition and
Application modules windows.

Page 42

Running the project
Locate the project directory in the Filer window where it was created and double click on it to run it. The following window
should appear on the screen:

Page 43

Importing an existing project
Sourcery allows existing projects to be imported and tries to do as much of the work as possible. In this example we will look at
importing one of the example applications that comes with DeskLib, and compiling and building it using GCC.

Assumptions
This tutorial assumes you have the following installed on your computer:

• GCC compiler and tools
• DeskLib library

See Appendix A for information detailing where these can be obtained from.

Getting started
Make sure the Projects window is open and drag the project to be imported to it. For this example we will use !Pane2test:

Page 44

The Project definition window will open. The From field will contain the pathname of the !Pane2test application. Complete the
following fields:

Name: !Pane2test
Project type: GCC RISC OS Application

Drag the Location icon to the filer window where you want the imported !Pane2test application to reside. This should not be the
same location as where it currently resides.

Click the Save button. After a few seconds a new icon will appear in the Projects window.

Page 45

Double clicking on the !Pane2test icon will open the Project window. Double clicking on the Code and Resources icons will
display the source code and resources that have been imported into Sourcery:

Sourcery will do the best it can to identify and import resources for an application. However, opening the original !Pane2test
application will show that the Templates3D file failed to be recognised and imported. Simply drag this file to the Resources
window and click Save in the Resource definition window that appears.

Page 46

Setting the code type
In this example we can see that three header files and two source files have been imported. Because in this example we are
going to use GCC to compile the code we need to make sure the correct code type is being used. Highlight the Pane2test and
PaneTests source code and choose Edit from the Selection sub menu:

The source definition window will appear for each item of source code:

Ensure that the Code type is set to GNU C for both and click the Save button.

Page 47

Specifying include paths
Display the Include path definition window by double clicking on the Include icon in the Project window:

Now, from the iconbar menu choose Templates followed by Include paths...:

This displays a list of predefined Include paths. Drag the DeskLib icon to the Include path definition window. Click the Save
button.

Page 48

Specifying libraries
Display the Library definition window by double clicking on the Libraries icon in the Project window:

From the iconbar menu choose Templates followed by Libraries...:

Drag the DeskLib icon to the Library definition window. Click the Save button.

Page 49

Building the project
Click the leftmost icon at the top of the Code or Project details window to build the project:

Before running the project open the !Run file from the Resource window. It should now look something like the following:

For this example we used GCC which has resulted in a larger executable size. The line that reads:

WimpSlot -min 64K -max 64K

should be changed to:

WimpSlot -min 264K -max 264K

Page 50

Running the project
Locate the project directory in the Filer window where it was created and double click on it to run it. The !Pane2test icon will
appear on the iconbar:

The application will then behave in the expected way:

Page 51

Reference

Page 52

Projects
The Projects window is displayed by clicking Select on the icon bar icon:

This window allows new projects to be created and existing projects to be edited. Double clicking on a project will display some
of the components that make up the project.

Exporting a project
A project can be exported from Sourcery either in a state that is suitable for distribution or in source code form. When exported
in a state suitable for distribution the compiled binary and any defined resources will be exported but the source code and files
that Sourcery creates to store project details will not. To export a project it should be dragged to a Filer window from the Sourcery
Projects window. A prompt will appear asking whether the project should be exported complete with source or just runtime files.
Clicking OK will export the whole project, clicking Cancel will only export the runtime files.

Page 53

Project definition
To create a new project choose New from the Projects menu to display the Project definition window:

Name
The name of the project. This is the name that is displayed in the Projects window. It is also the name of the executable or library
file that will be created when the project is built.

Version
The version number that will appear in a program info dialog if one if one is present and will also be included in help details in
the !Run file.

Page 54

Title
The text that is used when help information is displayed as the name or title of the project.

Description
A short description that describes the purpose of the project. This is displayed in the Projects window when the Full info view is
selected.

Publisher
The author or company producing the software. This is used by the help system if available.

Web site
The address of the project or company home page on the Internet where information about the project can be found.

Project type
Sourcery supports a number of different project types. These have predefined settings to handle the building of RISC OS
applications, command line utilities, modules and libraries as well as others that can be defined by the user.

Object name
By default, the name of any object file or executable created when a project is built will be the name of the project or, for
applications, !RunImage. Specifying a name here will cause this name to be used instead. The specified name can contain a
number of symbols that will be replaced at build time:

$(name)
The name as specified in the Name field.

$(version)
The version as specified in the Version field.

Page 55

$(target)
The target of the object currently being built. For an explanation of Targets, see later.

This is particularly of use when building shared libraries with GCC which have a specific naming convention. For example, the
library ODBC might have an object name as follows:

lib$(name).so.$(version)

which might give an output file name something like:

libODBC.so.1.2.3

or

libODBC/so/1/2/3

under RISC OS. The translation of the . to / is handled automatically where necessary.

Enable multiple build objects
If this is switched on it is possible to generate more than one binary object when a project is built. For example, when creating
a library it may be beneficial to have a test harness that is used to test the functionality of the library. In this situation both the
library and test harness could be built from within the one project. If this is switched on an extra icon appears in the Project
window. This is covered in more detail in a later section.

Location

The location of the project where it is to be stored on disc. The location can be typed but it is easier to drag the icon to the
directory where the project is to be saved.

Page 56

Import
Sourcery can import source and resources from projects that are built using make (although the makefile itself will not be
imported) and projects that have been defined in RPM. If a project is being imported it should be dragged to this field.

Once these fields have been completed clicking the Save button will create a new project.

The Constants button allows constants to be defined for the project. This is covered later.

Page 57

Editing a project definition
A project definition can be edited by clicking Menu over the project in the Projects window and choosing Item followed by Edit...
The Project definition window is then displayed with the existing project details.

Page 58

Targets
Sourcery enables more than one target file to be created from the same set of source code. This is especially useful when
building a library that will be linked with normal applications and with relocatable modules which require certain compiler
options to be used when code is compiled. The Targets window allows the user to specify which different targets will be built
for a project:

The available targets can be customised as required, see the Choices section later in this guide. Any greyed out targets cannot
be deselected, they will always be available to be built. This can also be configured when changing the list of available targets.

Default target
A default target must be specified for the project. This is the target that will normally be generated when the project is built. The
remaining targets are generated by explicitly selecting them to be built. This is covered later.

Clicking Save will store the selected targets for the project.

Page 59

Constants
Projects can have constants associated with them that can be used when defining the commands that are used to build and
maintain source code and resources (see Tools later). The Constants window allows the name, label and value of the constant
to be defined:

The example shows project wide constants that have been defined for CVS and Subversion source control. Normally only one
of these would be defined. A naming protocol exists for Constants to minimise confusion when they are used in Tool
commands. The Constant label should always be prefixed with C_.

A Constant can be amended by highlighting it and changing the fields at the bottom of the window:

Name
The name of the Constant. This is only used in this window.

Page 60

Label
The label that will be used in the Tool command to specify the use of the Constant.

Value
The value that will replace the label in the Tool command when the command is executed.

The following buttons are available:

New
Adds a new Constant to the list.

Remove
Removes the currently highlighted Constants from the list.

Apply
Applies changes made to name, label and value to the currently highlighted Constant.

Cancel
Closes the window without saving any changes.

Save
Closes the window and saves any changes made to the Constants.

Page 61

Project type templates
Clicking Menu over the icon bar icon and choosing Templates followed by Project types... will display a list of available project
types. The required project type can be dragged from this window to the Project definition window as an alternative to using
the Project type field.

Page 62

Project details
Double clicking on a project in the Projects window will display the Project details window:

This window displays the different components that make up a project. Different project types can have different combinations
of component types so not all projects have the components shown here. Double clicking on any of these components will
open the appropriate window.

Code
Every project will have code. This is the source code that will be compiled to form the executable or library.

Include
A lot of programming languages have the concept of include files. These are files that are included into the source that is
written to provide common definitions or constants. The project has to be told where to find the include files that it will use.

Flags
The tools that are used to compile the source code often have options that can control the way the code is compiled. These
flags can be set on a per project basis.

Page 63

Libraries
Libraries are pieces of compiled code, often supplied by third parties, which can be linked into a project to provide useful
functionality.

Resources
Resources are normally only used when creating a RISC OS application. They are the !Boot, !Run, sprite and any other files
that are required for the application to run.

Modules
Modules are also only available when creating a RISC OS application. They allow the user to specify the modules that appear
in the applications !Run file without having to manually edit the file.

Note that most of the standard operations such as copying, deleting and creating new items have no effect in this window.

The standard menu also an additional entry.

Project
This sub menu will display a list of operations that can be carried out on the whole project. The contents of the sub menu can
be customised by the user and will therefore vary from what is shown here:

Page 64

Build dependent...
When this item is chosen a window will appear that allows any projects that the current project is dependent on to be
automatically built one after another:

When the window is opened for the first time all of the dependent projects for the current project are automatically added to the

Page 65

list. All of the libraries included by each project are be examined and if they are defined within Sourcery they will be added to
the list. This operation works recursively to try and satisfy all dependencies.

Further projects can be added by dragging them from the Projects window to the arrow in this dialog. Projects can be
reordered in the list by using the up and down arrows and removed altogether by using the Remove button.

Clicking the Build button will build each project in turn, stopping if there is an error.

This feature is particularly useful if a number of libraries are included in a project and a header file is changed. Using this
feature will rebuild any code that is affected by the change.

Build multiple objects...
This item will display a window showing all of the available build objects that are available for the project:

Selecting the objects to be built and clicking Build will build each object in turn. Clicking Apply will store the settings but will not
actually build the objects. If an object is greyed out it is defined as always being built.

Build and run project
The same as Build except that for Application type projects Sourcery will launch the project after it has built.

Page 66

Build multiple targets...
This item will display a window showing all of the available build targets that are available for the project:

Selecting the targets to be built and clicking Build will build each target in turn. Clicking Apply will store the settings but will not
actually build the targets. Note that any objects marked to be built in the Build object selection window will be built when
multiple targets are built in this way.

Build project
Choosing this will build the project. Any code that needs compiling will be compiled and the resultant code combined into the
final binary file for the project.

Clean build
This will remove all object files from a project when chosen and force all code to be recompiled the next time the project is
built.

Page 67

Find
Clicking Find will open a window that allows the source code to be searched for an expression.

Enter the text to be searched for and click Search. Any results will be displayed in a standard throwback window.

Generate makefile
Attempts to generate a makefile so that make or amu can be used to build the project.

Generate Unix makefile
Attempts to generate a makefile suitable for using on Unix type operating systems.

Open filer directory
Opens the filer window that contains the project directory.

Reset build status
Used to reset the status of a project so that Sourcery no longer thinks the project is being built. Note this was added to work
around an issue that should be fixed as of version 1.10 or later.

Versions
Gives access to CVS or Subversion version control tools. Note that these commands work on the whole project when
accessed via this menu.

Page 68

CVS
The following are available from the CVS menu:

Check out project
Checks out the project so changes can be made to the source code and resources.

Commit changes
Commits any changes back to the repository. A prompt will appear requesting the message that should be associated with the
changes.

Commit changes and release
Commits any changes back to the repository and releases the project so other users can make changes.

Show differences
Shows any differences between the local working copy of the project and that stored in the repository.

Get latest version
Gets the latest version of the project files.

Page 69

Import a project into CVS
Imports a complete project into CVS.

Release project
Release the project so that other may work on it without committing any changes.

Status
Shows the status of the project.

Subversion
The following are available from the CVS menu:

Check out project
Checks out the project so changes can be made to the source code and resources.

Cleanup repository
Cleans up the working copy.

Page 70

Commit changes
Commits any changes back to the repository. A prompt will appear requesting the message that should be associated with the
changes.

Commit changes and release
Commits any changes back to the repository and releases the project so other users can make changes.

Show differences
Shows any differences between the local working copy of the project and that stored in the repository.

Get latest version
Gets the latest version of the project files.

Import a project into CVS
Imports a complete project into CVS.

Release project
Release the project so that other may work on it without committing any changes.

Status
Shows the status of the project.

Update object from repository
Updates working copy with changes from repository.

Page 71

Code
Double clicking on the Code icon in the Project details window will display the source code that is defined for the project:

Double clicking on a piece of code will load it into a text editor. Code that Sourcery decides is a header file is displayed in a
different colour to other code. Also, code where the underlying file is read only will be displayed faded. This is to accommodate
version control systems that might change the access attributes of a file.

When using the Full Info display in this window some additional information is shown. As well as the code name and
description, the type of the code and the size of the underlying file is shown.

Page 72

The Item menu has some extra options. The contents of this menu can be customised by the user and will therefore vary from
what is shown here:

The extra menu items are as follows:

Compile
Compiles any highlighted code in the project without linking it.

Find
Clicking Find will open a window that allows the source code to be searched for an expression.

Enter the text to be searched for and click Search. Any results will be displayed in a standard throwback window.

Page 73

Open
This is used when you want to edit multiple pieces of code. Rather than double clicking on each in turn, they are all selected at
once and choosing this item will then open them all for editing.

Tools
The Tools sub menu gives access to the following tool:

Touch
Sometimes it is necessary to trigger the recompilation of code without having made any changes to it. This is often referred to
as 'touching' the code. Select the code to be touched and choose this.

Versions
Gives access to CVS or Subversion version control tools. Note that these commands work on the highlighted items of code
when accessed via this menu.

CVS
The following are available from the CVS menu:

Check out file
Checks out the code so changes can be made.

Page 74

Commit changes
Commits any changes back to the repository. A prompt will appear requesting the message that should be associated with the
changes.

Commit changes and release
Commits any changes back to the repository and releases the project so other users can make changes.

Show differences
Shows any differences between the local working copy of the code and that stored in the repository.

Get latest version
Gets the latest version of the source code.

Release file
Release the code without committing any changes so that others may work on it .

Status
Shows the status of the code.

Page 75

Subversion
The following are available from the CVS menu:

Check out project
Checks out the project so changes can be made to the source code and resources.

Cleanup repository
Cleans up the working copy.

Commit changes
Commits any changes back to the repository. A prompt will appear requesting the message that should be associated with the
changes.

Commit changes and release
Commits any changes back to the repository and releases the project so other users can make changes.

Show differences
Shows any differences between the local working copy of the project and that stored in the repository.

Page 76

Get latest version
Gets the latest version of the project files.

Import a project into CVS
Imports a complete project into CVS.

Release project
Release the project so that other may work on it without committing any changes.

Status
Shows the status of the project.

Update object from repository
Updates working copy with changes from repository.

Page 77

Adding new code
New code can be added in two different ways.

New code
Choosing New from the menu or clicking the New icon will display the Source definition window covered in the next section.

Filer
Dragging a text file either with a suitable suffix or included in a suitable suffix type directory to the Sources window will open a
Source definition window and allow the file to be imported

Page 78

Source definition
To create new source code choose New from the Code menu to display the Source definition window:

Name
The name of the source code. This is the name that is displayed in the Code window. It does not have to be the internal name
of the piece of code. In fact, there is nothing to stop there being multiple functions or procedures within a single source code
file.

Description
A short description that describes the purpose of the code. This is displayed in the Code window when the Full info view is
selected.

Code type
Sourcery supports a number of different code types. These have predefined templates that are populated when the code is
created. New code types can be added by the user.

Once these fields have been completed clicking the Save button will create a new code.

Page 79

Editing a source definition
A source definition can be edited by clicking Menu over the code in the Code window and choosing Item followed by Edit... The
Source definition window is then displayed with the existing code details.

Code type templates
Clicking Menu over the icon bar icon and choosing Templates followed by Code types... will display a list of available code
types. The required code type can be dragged from this window to the Source definition window as an alternative to using the
Code type field. Clicking the Templates... icon on the toolbar will also display the code types.

Page 80

!RunImage source definition
If a piece of source is created with the name !RunImage, and it is defined as being an interpreted code type such as BASIC,
then it is treated differently by Sourcery.

Source code is normally located within a separate directory within the project directory. For compiled languages this source
code is translated into a single file called !RunImage which is the main application binary. Interpreted languages work a little
differently in that the code is not translated until it is run. Because this translation stage does not take place, no !RunImage file
is produced which would mean that applications written in interpreted languages in Sourcery would have no !RunImage file.

To get around this limitation, Sourcery treats any interpreted file called !RunImage differently, and automatically copies it to the
project directory when the project is built or the source code compiled.

Page 81

Include path definition
Double clicking the Include icon in the Project details window will display this window:

There are three ways Include paths can be specified:

Include path templates
Clicking the Templates... button or clicking Menu over the icon bar icon and choosing Templates followed by Include paths...
will display a list of available include paths. These can be dragged to the definition window. Note that these templates can be
set up to contain multiple paths.

Page 82

For example, the OSLib template in the window shown has the OSLib includes paths and the standard ANSI C include paths
defined.

Include paths defined in this way have a small version of the icon used in the Include paths template window next to them.

Projects
The second way in which an include path can be specified is to drag a project from the Projects window. This will allow any
header files defined in this project to be included. A small project icon will appear next to an include path added in this way.

Filer
The final way to add an include path is to drag a directory from a Filer window. Any header files in this directory can then be
used. A small directory icon will appear next to the included directory.

A definition with a selection of include paths sources is shown below:

Page 83

Editing an include path
Clicking on an entry will display it in the Path field at the bottom of the window. Non project include paths can be edited in this
field. Click Apply to store the changes.

Deleting an include path
Highlight the include paths to be deleted and click the Remove button. The include paths will disappear from the list. Note that
this will not be permanent until Save is clicked.

Changing the order of include paths
The position of the include path in the list can be changed through the use of the up and down arrows. This will affect the
order in which the paths are passed to the compilation command when any code is compiled.

Page 84

Library definition
Double clicking the Libraries icon in the Project details window will display this window:

There are three ways Libraries can be specified:

Library templates
Clicking the Templates... button or clicking Menu over the icon bar icon and choosing Templates followed by Libraries... will
display a list of available libraries. These can be dragged to the definition window. Note that these templates can be set up to
contain multiple libraries.

Page 85

For example, the OSLib++ template in the window shown has the OSLib, C++ and C libraries defined.
Libraries defined in this way have a small version of the icon used in the Libraries template window next to them.

Projects
The second way in which a library can be specified is to drag a project from the Projects window. This will allow any header
files defined in this project to be included. A small project icon will appear next to an include path added in this way.

Filer
The final way to add an include path is to drag a library from a Filer window.

A definition with a selection of include paths sources is shown below:

Page 86

Editing a library
Clicking on an entry will display it in the Path field at the bottom of the window. Non project libraries can be edited in this field.
Click Apply to store the changes.

Deleting a library
Highlight the libraries to be deleted and click the Remove button. The libraries will disappear from the list. Note that this will not
be permanent until Save is clicked.

Changing the order of libraries
The position of the library in the list can be changed through the use of the up and down arrows. This will affect the order in
which the libraries are passed to the linking stage of the build process.

Page 87

Resources
Double clicking on the Resources icon in the Project details window will display the resources for the project. This is normally
only available when creating a RISC OS application.

This window will initially be blank when first displayed.

Once some resources have been defined the contents will look much like the contents of an application directory.

Page 88

The Item sub menu has some extra options when opened over this window. The contents of this menu can be customised by
the user and will therefore vary from what is shown here:

The extra menu items are as follows:

Find
Clicking Find will open a window that allows the resources to be searched for an expression.

Enter the text to be searched for and click Search. Any results will be displayed in a standard throwback window.

Open
This is used when you want to edit multiple resource files. Rather than double clicking on each in turn, they are all selected at
once and choosing this item will then open them all for editing.

Page 89

Versions
Gives access to CVS or Subversion version control tools. Note that these commands work on the highlighted resource items
when accessed via this menu.

CVS
The following are available from the CVS menu:

Check out file
Checks out the file so changes can be made.

Commit changes
Commits any changes back to the repository. A prompt will appear requesting the message that should be associated with the
changes.

Commit changes and release
Commits any changes back to the repository and releases the project so other users can make changes.

Show differences
Shows any differences between the local working copy of the file and that stored in the repository.

Get latest version
Gets the latest version of the resource file.

Release file
Release the file without committing any changes so that others may work on it.

Status
Shows the status of the file.

Page 90

Subversion
The following are available from the CVS menu:

Check out project
Checks out the project so changes can be made to the source code and resources.

Cleanup repository
Cleans up the working copy.

Commit changes
Commits any changes back to the repository. A prompt will appear requesting the message that should be associated with the
changes.

Commit changes and release
Commits any changes back to the repository and releases the project so other users can make changes.

Show differences
Shows any differences between the local working copy of the project and that stored in the repository.

Page 91

Get latest version
Gets the latest version of the project files.

Import a project into CVS
Imports a complete project into CVS.

Release project
Release the project so that other may work on it without committing any changes.

Status
Shows the status of the project.

Update object from repository
Updates working copy with changes from repository.

Page 92

Adding new resources
A new resource can be added in three different ways.

New resource
Choosing New from the menu or clicking the New icon will display the Resource definition window covered in the next section.

Resource templates
Clicking the Templates icon on the toolbar or clicking Menu over the icon bar icon and choosing Templates followed by
Resources... will display a list of available resources.

The required resource can be dragged from this window to the Resources definition window.

Page 93

Filer
Finally, any file can be dragged from a Filer window to be added as a resource. This will open the Resource definition window
to allow additional details to be entered.

If a directory is dragged to the Resources window then a message will appear asking if the directory should be imported en
masse, in which case a single Resource definition window will be opened, or individually, in which case a Resource definition
window will be opened for each file contained in the directory or any sub directories. The imported directory hierarchy will be
maintained.

Editing a resource
Double clicking on a resource in this window will load it into the relevant editor.

Page 94

Resource definition
To create a new resource choose New from the Resources menu to display the Resource definition window:

Name
The name of the resource. This is the name that is displayed in the Resources window and the name of the file on disc.

Description
A short description of the purpose of the resource. This is displayed in the Resources window when the Full info view is
selected.

Base file
Drag an external file here to import it as the resource. Dragging a file here when the Resource definition is being edited and
saving will overwrite the existing resource.

Type
The file type of the resource can be set to any valid RISC OS file type by selecting one from this list.

Treat as text
If this is selected then when the resource is edited it will be loaded into a text editor rather than the editor defined by its file
type. This is useful for Obey, HTML and other files which normally do something other than launching an editor when they are
double clicked.

Page 95

Once these fields have been completed clicking the Save button will create a new code.

There are two further buttons on this window:

Reset
If a file has been dragged to this window for import and appears in the Base file field then clicking Reset will remove the
reference to it.

Template...
Clicking this will open the resource in the relevant editor for editing. This button will only be active if the resource has first been
saved.

Editing a resource definition
A resource definition can be edited by clicking Menu over the resource in the Resources window and choosing Item followed
by Edit... The Resource definition window is then displayed with the existing resource details.

Page 96

Modules
Double clicking the Modules icon in the Project details window will display this window:

This window allows a list of external modules that the project needs to be maintained. This list is then used to build the !Run
file for the application and adds the relevant checks to ensure the correct version of each module is loaded. Next to the
description of the module are displayed the minimum version of the module required (* for the latest available) and the version
of RISC OS that this is relevent to (* indicates any version).

If necessary it is possible to specify a different list of modules for different versions of RISC OS. This facility is provided mainly
to circumvent the problems caused by the different versions of RISC OS numbering Toolbox modules inconsisently.

Adding a module
A module is added to this window by dragging an entry from the modules template window. To display the template window
click the Templates... button or choose Templates followed by Modules... from the icon bar menu.

Page 97

Module version
Applications often require that a specific version of a module is present. Highlighting a module allows the version number to be
specified.

Normally it is best to select the Use latest option. This will use the latest version number that Sourcery knows about (this can
be configured using Choices - see later). Sometimes however it may be necessary to require a different version number.
Unselecting Use latest will activate the Version field. The required version number can then be entered. Click Apply to store the
change and Save to make the change permanent.

Page 98

Specifying a module for a specific version of RISC OS
Located next to the Use latest option is the OS Version list. If required a different version of a module can be specified for a
specific version of RISC OS. Normally this should be set to Any, but if an application uses the Toolbox it may be necessary to
specify a different version for RISC OS 5 compared to other versions. Any versions will always be used unless there is an
overriding RISC OS version specific entry.

Only the major version of RISC OS is considered when performing this check.

If RISC OS version specific modules are specified then the !Run file is built slightly differently. A series of additional files are
created within the !RunFiles directory with one being created for each specified version of RISC OS plus a general version.
The main !Run file then determines which of these to invoke.

Deleting a module
Highlight them modules to be deleted and click the Remove button. The modules will disappear from the list. Note that this will
not be permanent until Save is clicked.

Changing the order of modules
The position of the module in the list can be changed through the use of the up and down arrows.

Page 99

Project flags
Double clicking the Flags icon in the Project details window will display the Flags window:

This window displays all of the tools that Sourcery uses to compile, build or any number of other things. These tools often have
options that can be turned on and off and which require setting on a per project basis. Through this window the flags for all
these tools can be set although a particular project may not use all the tools. The settings only apply to that project and can be
different for every project.

The tools are split into groups. Within the Compilers directory will be the list of compiler tools:

Note that these groups and the tools within them will vary depending on how Sourcery is configured.

Note that some tools may be greyed out. This is because it is possible to force Sourcery to use system wide settings for a tool.

Double clicking on one of these tools will display the flag settings window.

Page 100

Project tool flag settings

Suffix
This is a display only field that shows the suffix that source files must have to be processed by this tool.

Description
A short description of which tool is being used for this suffix.

Flags
This section varies depending on which tool is being configured. Knowledge of the tool is required to set these options
sensibly.

The default settings that are supplied with Sourcery should be suitable to begin with. These can then be changed as the user
becomes more experienced.

Page 101

Flags that have (T) following their name should not be selected unless the user is certain of what they are doing. These flags
are used to generate different build targets for a project and get set according to which target is currently being built. They are
included in this window for the advanced user.

Miscellaneous
This is some text that will be embedded into the command generated when the tool is run. It allow for options to be specified
for a project that would not make sense as flags.

For example, defining certain constants might fall into this category.

Clicking Save will save the tool flag settings.

Page 102

Multiple build objects
As mentioned briefly earlier in this manual, it is possible to specify multiple build objects for a project which allows more than
one binary object to be built from one project.

Note that this feature is intended for more advanced users.

To activate this feature display the Project definition window for a project:

Within this window switch on the Enable multiple build objects option and click Save.

Page 103

When this option is activated a new icon is displayed in the Project window as shown:

Double clicking the Build Objects icon displays the Build Objects window:

This window will be empty to begin with. Choosing New from the main menu will allow a Build Object to be defined by
displaying the Build Object window:

Page 104

This window contains the following:

Name
The name of the build object. This is the name that will be given to the binary file created and replaces the Project name for
standard projects. The behaviour for RISC OS applications is the same, in which case this name will be ignored and a name of
!RunImage used.

Project type
As it is possible to create multiple build objects, Sourcery needs to know how to create each different object. The list of
available types here is the same as in the Project definition window and enables Sourcery to invoke different tools, for example
a linker or a library generation tool, to create the object.

Description
A brief description of the build object. This only appears in the Build Objects window.

Page 105

Object name
An optional field that specifies the name of the object file or executable that is created. See Object name under Project
definition for full details.

Always build this object
If this is switched on then the object will always be built when the project is built.

Build Objects
This area of the window allows the source files that are going to be used to build the object to be specified. To do this simply
drag the required files from the Code window to this window. This tells Sourcery to take the object code produced from these
files when they are compiled and include it in this Build Object. One source file can be included in many build objects within a
project.

If a file is no longer required to be part of a build object then it can be highlighted and the Remove button clicked. This will only
remove it from the build object and will not delete the source from the project.

The order of the source files can also be changed by highlighting a file and using the up and down arrows to alter the position.

Master project type
Be aware that when multiple build objects are activated it is necessary to define at least one build object. The default, or
master, project type will not generate a binary object.

It is also worth considering what the master project type should be for the project. The master project type will be used to
determine which icons are available in the Project window. Therefore, if a library and a command line utility are to be built from
a project the master project type should be set to Command line as this will make the Include and Libraries icons available.

Building multiple objects
See the section covering the Project menu in the Project definition window for details on how to build multiple objects.

Page 106

Choices
Choosing Choices... from the icon bar menu will display the Choices window:

This window allows nearly all areas of Sourcery to be configured according to the tools and libraries that the developer has
installed on their system.

All of these icons except General give a Filer like window when clicked on.

The Item sub menu for most Choices windows has one extra item:

Reset to default
Selecting this item will reset the highlighted objects back to their default settings so they are the same as when Sourcery was
first installed.

Page 107

Code types
This window allows the types of code that Sourcery understands to be configured.

Choosing New from the menu will display the Code type definition window:

This window allows the details for a code type to be defined.

Page 108

Suffix
The suffix of the file associated with the code type. For example, C files normally have a suffix of c, C++ files may have a suffix
of c++ or cc.

Filetype
The filetype of the underlying file. This will normally be Text for compiled languages but some interpreted languages will have
other types.

Interpreted
If selected this specifies that the language is an interpreted one. This means that when the project is exported for distribution
any interpreted source code will also be exported.

Description
A short description of the code type.

Sequence
Tool sequences are described later in more details. This is basically the list of commands that will be run when the code is
compiled. If no sequences is specified the code type is assumed to be some sort of header file.

Priority
Occassionally it can be useful to have code compile in a specific order. This might be necessary if a piece of code is
dependent on the output produced from another file. The priority controls the order in which code is compiled. It should
normally be set to medium.

Code OS
It is possible for Sourcery to run commands remotely on other computers running other operating systems. If one is to make
use of this feature it is important to remember that the way in which source files are named can be slightly different.
For example, on RISC OS source code is named as follows:

Page 109

<pathname>.<source type suffix>.<source file>

Whilst on Unix it would be as follows:

<pathname>.<source file>/<source type suffix>

Note that the RISC OS directory separator has been used in both these examples.

The key point is that on RISC OS source files reside in a directory which specifies the type of source. On Unix the type is
concatenated to the name as a suffix.

In order for Sourcery to successfully run commands remotely the correct form of naming convention must be used. Choosing
the operating system on which the compilation commands will be run here will ensure that the files are named correctly.

Note that it is also necessary for the code type to use a Tool Sequence that has been set up to run a Tool specifically defined
for the remote OS and that the source files must reside on a network drive that both operating systems can access.

Click Save to save the definition.

Page 110

Template...
This button allows a template to be defined that will be populated when code of this type is created. The template for a C++ file
is shown below:

 /*
 ** Name: $name.$suffix

 **

 ** Date: $date

 **

 ** Purpose: $description

 **

 */

 $name()

 {

 }

There are some special tokens that can be embedded in the template. These will be replaced when code is created.

$application
The name of the project that has created the code.

$date
The date when the code was created.

$description
The description entered for the code.

$name
The name of the code.

Page 111

$suffix
The suffix of the code.

Page 112

Project types
This allows the different types of project that Sourcery can create to be edited:

Choosing New from the Project type menu will display the Project type definition window:

This window allows the project type details to be defined:

Name
The name of the project type.

Description
A short description of the project type.

Page 113

Sequence
Tool sequences are described later in more details. This is basically the list of commands that will be run when the project is
built.

Project is an application
If this is selected then the project will be built with the executable name !RunImage.

Project uses resources
If this is selected then the project will include Resources in the Project details window.

Project uses libraries
If this is selected then the project will include Libraries in the Project details window.

Project uses includes
If this is selected then the project will include Libraries in the Project details window.

Clicking Save will save the project type definition.

Flags
The different tools that are used to build a project can have numerous options which can be switched on or off. Clicking this
button will display the Project flags window which allows default settings for this type of project to be set up. The working of this
window are described elsewhere.

See also the section on Targets for a description of how the different flag settings interact with each other.

Page 114

Resources
Projects that are defined as applications can have resource files attached to them. This window allows the default set of
resource files to be maintained. It works in the same way as the Resources window in a project.

Page 115

Tools
Tools are the individual commands that are used to build a project.

Choosing New from the menu will display the Tool definition window:

Page 116

Name
The name of the tool. Normally the name of the command line utility that will be invoked.

Suffix
The suffix that is to be associated with the tool. A tool does not have to have a suffix defined.

Description
A short description of the tool.

Memory
The initial size of the wimpslot to be allocated when running the tool.

Allow flags to be switched per project
If this is switched on then Project flags can be defined on a per project basis for the tool. Otherwise system wide settings are
used.

Supports prefix
If this is switched on it specifies that the tool supports the use of the Prefix command supplied with the Acorn C/C++ suite. If
this is not switched on the a Dir command will be issued instead.

Run command in project parent
Normally when a tool command is run it is run from within the directory where the project details are stored. Some commands
need to be run in the directory that contains the project directory. Setting this flag will switch on this behaviour.

Refresh objects
Some commands will affect the size or permissions of a file. This needs to be reflected in the source or resource window.
Setting this flag will cause the details displayed in the window to be refreshed once the command has run.

Page 117

Flags
This sections allows the individual command line flags for the tool to be defined. Clicking New will add a new flag, Remove will
delete any highlighted flags and Apply will store any changes made to the flag.

Name
The name of the flag that will appear in the Project flags window.

Label
The label that is used in the Command section when defining the tool command.

Value
The flag expected by the command line tool to specify the action being defined. Some special tokens can be embedded in
here:

$(includepath)
Will be expanded to list all the defined include paths for the project.

$(librarypath)
Will be expanded to list all the defined libraries for the project.

$(objectlist)
Will be expanded to list all the object files for the project.

$(filecontents)
Will be expanded to list the contents of the file being compiled.

Switchable
If this is selected the flag will appear within the Project tool flag settings window.

Page 118

Split paths
The Value field can contain some special tokens to specify any defined include paths or libraries. For example:

-I $(includepath)

If this is set then the command will be expanded as follows:

-I path1 -I path2 -I path3

if it is not set then the command would look like this:

-I path1,path2,path3

Target flag
Setting this specifies that the flag is to be used as a build target flag. The only affect this will have in practice is to append a (T)
to the name of the flag in the Project flags window.

Command
The command that is to be run when the tool is invoked. This is made up of references to the defined flags as well as some
special tokens:

$(file)
The name of the code being compiled.

$(project)
The name of the project.

Page 119

$(localpath)
The path of a resource file relative to the main project directory.

$(unixlocalpath)
The path of a resource file relative to the main project directory specified using Unix style naming.

$(suffix)
The suffix of the file being processed. A directory separator of '.' is automatically added if the suffix is present.

$(unixsuffix)
The suffix of the file being processed. If this falls at the end of a path then it will be prefixed with '.'. If it falls within a path then it
will be added with a '/' after it.

$(outputsuffix)
This is used when building multiple targets for a project. The suffix that is defined in the Target definition window will be output.

$(temp)
A temporary filename that is guaranteed to be unique for the lifetime of the Tool Sequence being run. This allows temporary
output from Tools that are chained together to be passed from tool to tool.

$(pattern)
The pattern specified in the Find window.

$(findpaths)
The path that will be searched when a find operation is triggered.

$(misc)
The Miscellaneous flags defined in the Project tool flag settings window.

Page 120

$(viafile)
A temporary file that will contain all the object files and libraries for the project.

The tilde (~) character also has a special meaning. Any text that appears between two tilde characters will be expanded and
used as the flag settings for a tool when a makefile is generated. Two ~ symbols together will result in a single ~ symbol in the
generated command.

Constants and Prompts (see below) can also be specified in the command.

Page 121

Prompts
Some commands that are run require the user to specify certain settings at runtime. This can be achieved by defining prompts
for a Tool. Prompts will be displayed before the Tool is run to enable the user to set flags and pass other information to the
Tool. The Prompt window is accessed via the Prompts button on the Tool definition window.

A highlighted prompt can have the following settings amended:

Name
The name of the Prompt that will appear when the Tool prompts the user for input.

Label
The label that is inserted in the Tool command to be replaced with the value entered at the prompt. Prompt labels should have
a prefix of P_ to specify that they are prompts.

Page 122

Type
Prompts can be either Free text which require a value to be entered or On / Off which will display an option button which the
user can switch on or off.

Flag
The full text that will replace the label in the Tool command. The $(value) variable will be replaced by whatever the user
entered. If the prompt is a Free text and no value is entered then the label will be removed completely from the Tool command.

The following buttons are available at the bottom of the window:

New
Adds a new Prompt to the list of prompts for the Tool.

Remove
Removes the currently highlighted Prompt from the list.

Apply
Applies any changes made to the currently highlighted Prompt.

Cancel
Closes the window without storing any changes.

Close
Closes the window and stores the changes for the Tool. Note that the changes will not be saved until the Save button in the
Tool definition window is clicked.

The order of the Prompts can be changed by highlighting a Prompt and clicking the up or down buttons.

Page 123

Tool sequences
Tool sequences are chains of tools that are used to build a project.

Choosing New from the Tool sequences menu will display the Tool sequence definition window:

Page 124

Name
The name of the sequence.

Description
A short description of what the sequence does.

Interactive
If this is switched on the sequence will not be run using a Task Window. It will be started as a normal WIMP application.

Sequence
The sequence definition. To add to this list simply drag tools from the Tools window. A tool can be removed from the sequence
by highlighting it and clicking Remove.

The order of the sequence can be changed using the up and down arrows.

Click Save to save the sequence.

Menu sequences
Through Tool and Tool Sequence definitions Sourcery allows the user to run any command line based utility. To further make
use of this facility it is possible to define the menu items that appear on the main menu Project sub menu and the Item sub
menus for source code and resources.

This is achieved by creating Tool Sequence definitions in the Menus sequence directory:

Page 125

This contains three sub directories:

Project
Any Tool Sequences defined in here will appear on the Project sub menu from the main menu.

Resources
Tool Sequences defined in here appear on the Item sub menu when it is opened over the Resources window.

Source
Tool Sequences defined in here appear on the Item sub menu when it is opened over the Source window.

When defining Tool Sequences in these windows the user can also define sub directories to group related functions together.
The sequences in these directories appear on their own separate sub menus.

Page 126

There are a number of special Tool Sequence names that can be used without having to specify any Tools in the sequence.
These access internal functions of Sourcery without using external command line tools.

compile
Compiles the currently highlighted source code.

build
Builds the project, compiling any source code as necessary.

buildrun
Builds the project, compiling any source code as necessary and launches the project once it has been successfully built.

buildtarget
Displays a window which allows the selection of multiple targets to build.

Page 127

find
Runs the find tool to search source code and resources.

makefile
Generates a makefile for the project.

open
Opens any highlighted source code or resources in the relevant editor.

openparentdir
Opens the filer window that contains the current highlighted project.

touch
Touches any highlighted source code.

Page 128

Include paths
Includes paths specify where to look when compiling code to find header files:

To add a new path choose New from the menu to display the Include path definition window.

Page 129

Name
The name of the include path definition.

Description
A short description of the include path definition.

Include paths
The paths that make up the definition. Filer directories containing header files should be dragged to this window. One definition
can contain multiple paths as shown in the example.

Clicking on a path will highlight it and populate the Path field. This allows the include path to be further refined. Click Apply to
store the changes.

A path can be removed by highlighting it can clicking Remove.

The order of the paths can be changed though the use of the up and down arrows.

Page 130

Include paths and Targets
Sourcery can be set up to automatically use different include path definitions for different Target builds. Creating a new
directory with the name of the Target suffix (see later) will cause Sourcery to look in that directory first when looking up Include
path definitions. In the following image default settings for C, C++ and other include paths are defined but additionally there is
a sub directory with additional entries for 32 bit specific targets.

Sourcery will automatically use the 32 bit paths when building 32 bit code and only fall back on the defaults if a 32 bit variant
cannot be found.

Page 131

Libraries
Libraries specify the external functionality that will be linked into a project when it is built:

To add a new library choose New from the menu to display the Library definition window.

Page 132

Name
The name of the library definition.

Description
A short description of the library definition.

Libraries
The libraries that make up the definition. Library files should be dragged to this window. One definition can contain multiple
libraries as shown in the example.

Clicking on a library will highlight it and populate the Path field. This allows the library to be further refined. Click Apply to store
the changes.

A library can be removed by highlighting it can clicking Remove.

The order of the libraries can be changed though the use of the up and down arrows.

Page 133

Libraries and Targets
Sourcery can be set up to automatically use different library definitions for different Target builds. Creating a new directory with
the name of the Target suffix will cause Sourcery to look in that directory first when looking up Library definitions. In the
following image default settings for C, C++ and other libraries are defined but additionally there are a number of sub directories
with additional entries for module,26 bit and 32 bit specific targets.

Sourcery will automatically use the correct libraries when building different targets and only fall back on the defaults if a
suitable variant cannot be found.

Page 134

Modules
This window allows modules definitions to be set up to allow the easy maintenance of module references in !Run files.

A new module can be added by choosing New from the menu to display the Module version definition window:

Name
The name of the module. This is the name that is returned when issuing a *Help command, not the file name.

Filename
The filename of the module as it appears on disc.

Page 135

Path
The path in System where the module resides.

Description
A short description of what the module does.

Info
Extra information about the module, such as where it can be downloaded from, that can be displayed as part of the error when
the module is not found on the users system

Version
The latest version number of the module.

Click Save to save the module definition.

Page 136

Targets
This window allows the targets available when building a project to be configured:

Targets are primarily provided to allow different versions of a library to be built from the same source code. This is especially
useful if a library needs to be used with a normal application and with a module. Module code must be compiled with a different
set of compiler options.

A new target can be added by choosing New from the menu to display the Target definition window:

Name
The name of the target. This must not contain spaces.

Page 137

Suffix
The suffix that will be appended to any object code names that are produced when building this target.

Description
A description of what the target is.

Fallback
This is used when Include path or Library definitions do not exist for the Target but the default definitions should not be used.
For example, consider the situation where Include path definitions exist for 32 bit libraries. When building 32 bit targets these
will be used. However, a 32 bit module target might also exist which should use these paths. Setting the Fallback suffix for this
target to the same as the suffix for the 32 bit target avoids the need to set up specific 32 bit module Include path definitions
which would be the same as the ordinary 32 bit definitions.

Target is always included in project
If this is set the target will always be built for a project and cannot be excluded.

Click Save to save the target definition.

Target flags
Different targets are generated by specifying different compiler flags. Flags are defined in the same way as Project tool flags.

Page 138

Unlike Project tool flags however, only those flags which have a (T) after the name should be specified. These will then
override the settings at project level for these flags.

Sourcery allows tool flags to be specified in three different places and the relationship between the different flag settings can
be confusing.

Project type flags
These are the default flag settings for each different tool within a project type. Only non target flags (those without (T)) in their
name) should be set at this level. When a new project is created based on a project type, the tool flags for the project type are
copied to the project. Changing the default project type settings will then have no effect on the locally copied project flags.

Page 139

Project flags
The local copy of tool flags based on the settings for the type of project. These can be modified and changed without affecting
any other projects. Like Project type flags, you should avoid setting those flags with (T) in their name although advanced users
can set these if they want.

Target flags
The flags that apply to a particular target type. Only those flags with (T) in their name should be set at this level. Any flags that
are set will be merged with the Project flags when a piece of code is compiled. Thus picking a different target will cause a
different set of Target flags to be merged with the Project flags at compile time.

The table below shows the relationship between the different flags.

Optimise

Debug

Strict

Optimise

Debug

Strict

Optimise

Debug

Strict

On

Off

P
ro

je
c
t

fl
a
g

s

T
a
rg

e
t

fl
a
g

s

C
o

m
p

il
e
 t

im
e
 f

la
g

s

Off

Off

On

On Off

Off

Off

On

On

On

Off

On On

26 bit (T)

Module (T)

26 bit (T)

Module (T)

26 bit (T)

Module (T)

+ =

The final flag, 26 bit (T), is an example of how not to set flags. Because this is a target (T) flag it should not be set at project
level.

Note that a compiler or tool must be capable of producing code for a particular type of target. Sourcery will not prevent a tool
from being used to generate object code for a target if that tool does not have the required functionality, and will not magically
endow a tool with the ability to generate code of a certain type.

Page 140

Obey templates
Sourcery allows the automatic creation of sections of the !Run and !Boot files that deal with the loading of any modules
required by an application and the generation of Help variables. Obey templates allows the segments of code that make up
these sections to be edited and customised. Clicking on this displays the Obey templates window:

Double clicking on an icon will display the relevant code.

Page 141

Help variable code segment
This is responsible for setting up the entries in the !Run and !Boot files that provide simple version and help information.

By default the default for this segment looks as follows:

Set ~application~$Version “~version~”

Set ~application~$Web “~website~”

Set ~application~$Title “~title~”

Set ~application~$Publisher “~publisher~”

Set ~application~$Description “~description~”

There are a number of special tokens that will be replaced when the segment is used. The values of these are all taken from
the corresponding entries in the Project definition window:

~application~ & ~appname~
The name of the application taken from the Project definition window without a prefixing ! if present.

~description~
A brief description of what the application does.

~publisher~
The name of the company or individual publishing or distributing the application.

~title~
The title of the application.

~version~
The version number of the application.

Page 142

~website~
The website where the application or resources for the application can be found.

Page 143

Module ensure code segment
This segment loads a module within the !Run file, stating which version is needed and potentially some helpful information if it
cannot be found.

This looks as follows:

RMEnsure ~name~ 0.00 RMLoad ~path~.~filename~

RMEnsure ~name~ ~version~ Error You need ~name~ ~version~ or later to run

~appname~.~info~

Again there are a number of special tokens that are replaced when the segment is used:

~application~ & ~appname~
The name of the application taken from the Project definition window without a prefixing ! if present.

~filename~
The filename of the module. This is taken from the Module version definition window.

~info~
A brief description of where the module can be found. This is taken from the Module version definition window.

~name~
The name of the module. This is taken from the Module version definition window.

~path~
The path where the module is located. This is taken from the Module version definition window.

Page 144

~version~
The version of the module. This is taken from the Module version definition window or the Applications modules window.

Page 145

Module version ensure code segment
Sometimes an application requires different versions of the same module for different version of the operating system. This
normally only relates to Toolbox modules. This segment enables the !Run file to execute a different check for different versions
of the operating system.

This looks as follows:

If ((”<Boot$OSVersion>” LEFT 1 = ~version~) AND (”<~application~$RunComplete>” = “”))

Then Run <~application~$Dir>.!RunFiles.RunOS~version~

If “<~application~$RunError>” <> “” Then Error “Error loading modules”

Again there are a number of special tokens that are replaced when the segment is used:

~application~ & ~appname~
The name of the application taken from the Project definition window without a prefixing ! if present.

~version~
The version of the operating system that the file should be run for. This is only ever a major version like 3, 4, 5 or 6.

Page 146

Start actions
Start Actions allow other applications to be booted or run automatically when Sourcery is loaded:

The window comprises of two areas: Applications or paths to be booted when Sourcery is loaded and applications or paths to
be run when Sourcery is loaded. Both sections work in the same way:

Adding a new path
Simply drag an item from a filer window to the large arrow corresponding to the section to which the path should be added. Any
filer object can be dragged to this window.

List area
The list area shows a list of applications or paths that will be booted or run. Clicking on a path will highlight it.

Page 147

Remove
Clicking Remove whilst a path is highlighted will cause it to be removed from the list.

Up and Down
Clicking the Up or Down arrows while a path is highlighted will move it up or down the list. This allows the order in which the
paths are processed to be controlled.

When the required paths have been added to the window click Save to store the choices or Cancel to close the window without
making any alterations.

Page 148

General
General choices contain any miscellaneous choices that do not fit elsewhere.

Continue building after error
Normally when building a project, if a piece of code fails to compile the process will abort. Switching this only will enable the
process to continue and compile other code even when an error is encountered.

Filer find
RISC OS Select allows the Filer to support plugins for certain operations. The excellent !Locate utility can act as a replacement
for the Filer find action. If this is switched on Sourcery will use Filer action to when Find is clicked rather than the inbuilt find
functionality,

Tile window background
One of the strengths of Sourcery is the consistent, filer like interface. However, sometimes when a large number of filer and
Sourcery windows are open at the same time it can become a little difficult to keep track of which is which. If this is switched on
then all Sourcery windows will have a different background to make it easier to identify them.

Page 149

Double click opens new
If this is switched on then double clicking in a window will have the same effect as choosing New item... from the New menu.

Ignore files for operation
A number of options in Sourcery work on all the files in a project, or part of a project. For example, source control can be carried
out on the whole project.

There are occasions when files exist within project directories which you would not want to be included in these operations. For
example, Subversion creates /svc.

Files likes this which should be ignored can be defined here.

Default choices...
Clicking this button will prompt you to confirm that any changes that have been made to compiler and tool definitions should be
replaced with the defaults. Any new definitions that have been created will be unaffected.

Page 150

Toolbar
Along the top of some windows is a toolbar. This provides a quick way of performing some common operations.

 Build
Clicking this icon will try and build the project. Any source code that needs compiling will be compiled and then combined
together into the target executable or library.

 Run
The Run icon performs the same action as the Build icon but for applications will launch the application after it has been
successfully built.

 Compile
Sometimes it is necessary to only compile certain pieces of code without building the whole project. Selecting those pieces of
code and clicking this icon will just compile the selected code without building it.

 Open
Selecting multiple pieces of code and clicking this icon will open the code in a text editor.

 New
Clicking the New icon will open a window allowing a new item to be created. This is the same as choosing New from the menu.

 Touch
Sometimes it is necessary to trigger the recompilation of code without having made any changes to it. This is often referred to
as 'touching' the code. Select the code to be touched and click this icon.

Page 151

 Find
Clicking Find will open a window that allows the source code to be searched for an expression.

 Templates
Clicking this will display the relevant Templates window.

Page 152

The iconbar menu
Clicking Menu over the Sourcery icon on the iconbar will display this menu:

The following items are available:

Info
Moving the mouse pointer over this item displays the About this program window which displays version information about
Sourcery.

Help
Choosing this item will display the help supplied with the application.

Page 153

Choices
Choosing this will display the Choices window which is discussed in the Choices chapter.

Quit
Choosing this item will cause Sourcery to exit.

Page 154

Appendix A
This appendix contains details of where some useful tools, libraries and information can be found.

Name Description Link

Acorn C/C++ The C/C++ compiler suite originally from Acorn. www.iyonix.com
Now developed by Castle.

GCCSDK GCC compiler and tools. A free alternative to the gccsdk.riscos.info
above.

UnixLib Attempts to provides a full implementation of all Unix gccsdk.riscos.info
library calls. The default library for GCC.

OSLib An API library giving easy, efficient and type safe ro-oslib.sourceforge.net
access to all RISC OS SWI calls.

DeskLib A library to aid in the creation of RISC OS www.riscos.info/desklib
applications.

DeskDebug A desktop debugging tool. buyit.spellings.net

RISCOS.Info A useful resource when programming on RISC OS. www.riscos.info

Page 155

